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Abstract—The paper treats the control problem of a class of 

DPS described by hyperbolic PDE by using a spatial weighted 

error control. The eigen system of the PDE model is inferred. It is 

proved that the stability analysis can be obtained by using the 

finite dimensional model of the eigen system. A control algorithm 

is proposed and analyzed for a dynamic model with uncertain 

components. Numerical simulations that illustrate the efficiency 

of the method are presented. 

 
Index Terms—Distributed parameter systems, boundary 

control, weighted error.  

I. INTRODUCTION 

The study and development of feedback controllers for 

Distributed Parameter Systems (DPS) models described by 

partial differential equations (PDE) represent a very complex 

problem and a great number of researchers have tried to offer 

solutions. Boundary control of DPS occupies an important 

place in control theory and constitutes an active research 

area. There is a plethora of papers that treats the boundary 

control for DPS and a chronological list can be found in [1]. 

A class of these papers treats the spatial discretization of the 

PDE to derive a set of differential equations that constitute an 

approximation of the original DPS model [2-4]. Also, for 

DPS, which are described by hyperbolic  PDEs, [5-8] used 

modal decomposition to derive finite-dimensional systems 

that capture the dominant dynamics of the original PDE and 

are subsequently used for the low dimensional predictive 

controller design. In [9], nonlinear order reduction and 

control of nonlinear parabolic systems were studied for 

parabolic PDEs. Other authors treat the PDE model without 

approximation for the controller design [10-12] and avoid the 

losing the distributed nature of these systems. Within the 

class of distributed parameter systems, the solution of LQ 

control problem for hyperbolic systems by solving an 

operator Riccati equation was studied [14]. Geometric 

control has proved to be very successful as a control approach 

of PDE system and successful applications are reported in 

literature [15-17]. Designing a control law based on 

geometric control theory presents the advantage that the PDE 

model can be used in control design without any 

approximation, which allows preserving the fundamental 

control theoretical properties associated with the distributed 

nature of the model [18].A number of papers treat specific 

classes of DPS associated with mechanical, thermal or 

robotic systems. In [24], the regulation of a 

distributed-parameter flexible beam is considered using 

variable structure control techniques. In [25-29], a dynamical 

distributed controller is suggested based on an infinite- 

dimensional generalization of the second-order sliding 

mode-control techniques. Other papers [30-33] treat the 

control problem for a DPS model associated with a 

hyper-redundant manipulator described by hyperbolic PDE. 

The functional analysis or semigroup theory provide the 

mathematical methodology for this type of problems .This 

paper treats the control problem of a class of DPS described 

by hyperbolic PDE by using a simple eigen system based 

technique. First, the eigen system of the PDE model is 

inferred by using spatial weighted error techniques. It is 

proved that the stability analysis can be obtained by using the 

finite dimensional model of the eigen system.  A control 

algorithm is proposed and analyzed for a dynamic model with 

uncertain components. Numerical simulations that illustrate 

the efficiency of the method are presented. 

The paper is organized as follows. In Section 2, the 

dynamic model is presented. Section 3 concerns the 

formulation of the weighted error control, the eigen system 

and the design methodology of the controller. Section 4 

presents the simulation results. Finally, a Conclusion section 

ends the article. 

II. MODEL DESCRIPTION 

We consider a class of infinite-dimensional which is 

governed by a version of the hyperbolic PDE 

 

 (1) 

 

where  s is a mono-dimensional (1-D) spatial 

variable,  is time,  represents 

(∂q(t,s))/∂t , and  are coefficient 

constants . The system state 

is . We assume the following 

initial conditions 

 

 
  

(0,s)= , ,  (2) 

 

and the boundary conditions 

 

qs(t,0) = 0;  qs(t,l) = u(t)   (3)
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where  is the boundary control 

variable  is the uncertain term 

that satisfies the condition [27] 

 

 (4)

    

where  is a positive constant. We consider that PDE (1) with 

initial and boundary conditions (2), (3) represents a 

well-posed problem. We used the standard notations:  

stands for the Hilbert space   and H stands for the Sobolev 

space.  

Such models are often met in a class of mechanical 

systems and in particular for modeling the flexible link 

manipulators or hyper-redundant arms. In these cases, a
2
 

represents the bending stiffness, b is the equivalent damping 

coefficient, c characterizes the elastic behavior, is given by 

the gravitational components and the input variable is 

represented by the boundary torque of the mechanical 

systems. Also, the initial condition q1(s) represents the initial 

velocity. 

We consider a desired state , , that 

satisfies linear model steady state of (1) with boundary 

conditions  (3) and the input  

 

 (5)

   

    

 

and we denote by  

 

 (6) 

 

the error variable ,where 

 

,    

   

. 

 

Definition 1: The Weighted Error (W-Error) is the spatial 

weighted geometric mean of the error variable (6) 

 

 =  (7) 

where 

 

=     

    

and  is the spatial weighting function that satisfies the 

following conditions: 

1. It is an eigen function of the spatial operator 

, 

 

 
Fig. 1. The weighting function (A=1, l=1) 

 

 (8) 

 

with boundary conditions 

 

 ,  (9) 

 

2.  (10) 
 

3. It is non-orthogonal with respect to the 

solutions  ( of (1)-(3), 
 

 (11) 

 

For example, we consider the weighting function (Fig 1) 

 

 (12) 

with 

 

  (13) 

that satisfies the conditions (9)-(11). 

 

Lemma 1: If the spatial weighted error   converges to 

zero, the system trajectory  converges to the desired 

position  

 

Proof: For the domain  we obtain, 

 

=     

 (14) 

 

and in the virtue of properties (10),(11) , 

 

       (15) 

 

              (16) 

 

and using (6) results 

 

 ,          (17) 

or 

              (18) 

 

Remark 1: The system stability with respect to  (t) 

ensures the stability with respect to . 
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III. CONTROL ALGORITHM 

Definition 2: The control task of the system (1)-(3) is to 

ensure the convergence to the desired state , 

 

 
 

Theorem 1: A closed loop control of the system 

(2.1)-(2.3) is asymptotic stable if the control law is 

 

 (19) 

 

where are the positive control coefficients that satisfy 

the following conditions, 

 

 (20) 

 

 (21) 

  

and   is a positive constant that satisfies 

 

 (22) 

   

Proof: From (1)-(3) and (6) the error dynamics will be 

described by  

 

 (23) 

 

 (24) 

 

 (25) 

 

where,  

 

 (26) 

 

(in order to simplify the notation, the variables  are 

omitted). Multiplying Eq (23) by  and integrating both 

sides, we obtain 

 

 
  

Integrating by parts, using the boundary conditions (25) and 

(9), this relation  becomes 

 

 (27) 

 

This equation can be rewritten in terms of W-Error variable 

, 

 + 

 

 (28) 

  

with initial conditions, 

 

(0) ,  (29) 

 

is obtained from the relation 

 

 ,  (30) 

 

and the constraint (2.4) becomes, 

 

  (31) 

 

Definition 3: We denote the system (28)-(29), defined by the 

transformation (6), as “the eigen system of (1)-(3)”.From 

Remark 1 we can infer that the dynamic behaviour of the 

system (1)-(3) is synthesized by the eigen system. 

Let us consider the Liapunov function 

 

 (32) 

 

where  is a positive constant that satisfies the condition (22). 

The function V can be rewritten as 

 

 (33) 

 

where 

 (34) 

 

and the condition (22) ensures that V is positive definite. 

Taking the derivative of V , 

 

 (35) 

  

By evaluating (35) along with the solutions of (28), 

substituting the control  from (19),rewritten as 

 

 (36) 

 

and taking into account the inequality (31), after simple 

additional manipulations, we obtain 

 

 (37) 

Where 

 

 (38) 
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Taking into account the conditions (20), (21), Q is positive 

definite. Also, the inequality (37) can be rewritten as the 

following differential inequality 

 

 (39) 

 

where are the minimum and maximum 

eigenvalue of the matrices, Q and P. This relation proves that 

the exponential convergence of  to zero as  

Taking into acount the Lemma 1, it yields 

 

 (40) 

IV. NUMERICAL SIMULATIONS 

Consider the dynamic model of a hyper-redundant continuum 

robotic arm described by PDE model (1)-(4) [30], 

 

 (41) 

 

   , (0,s)=  

 

qs(t,0) = 0;  qs(t,l) = (t) 

 

where   is the  rotational inertial density  (   1),  is the 

bending stiffness ,   is the equivalent damping 

coefficient  ,  is  the elastic coefficient 

( . These constants are scaled to realistic ratios for a 

long thin arm. The initial and boundary conditions are:  

= 0,   =0,  qs(t,0) = 0;  , where  is the 

torque applied at the top of the arm .The 

non-linear term h(q) represents the uncertain term defining 

the gravitational components,  , 

where  is the linear density, g is gravitational acceleration 

and A is the section area [29]. For the characteristic values of 

these parameters 

( ), associated 

to this thin long arm, the inequality (4) is satisfied for M = 10. 

The weighting function , 

 is selected.The desired state is  

that satisfies the stationary desired state for 

Acontrol algorithm for the desired state  

implemented. The controller gains are selected 

. These values verify the conditions 

(20)-(21) of the Theorem 1.For solving the PDE governing 

the closed-loop system behaviour, standard finite-difference 

approximation method is used by discretizing the spatial 

solution domain  .The resulting system is 

implemented in Matlab-Simulink. The boundary control law 

and the error dynamics are presented in Fig. 2 and Fig. 3, 

respectively. 

 
Fig.2.The boundary control 

 
 

Fig.3. The evolution of the error e(t, s) for 

 

We remark the good convergence toward zero of the error in 

the conditions of the presence of a disturbed term . 

V. CONCLUSION 

This paper treats the control problem of a class of DPS 

described by hyperbolic PDE with nonlinear component. By 

using a spatial weighted error control, the eigen system of the 

hyperbolic model is inferred. We prove that the stability 

analysis can be obtained by using the finite dimensional 

model of the eigen system. For the future, we intend to 

develop this result for other classes of DPS. 
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