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Abstract- Free vibrations of two concentrically located 

cylindrical shells with liquid between them are studied.  Such 

systems are met with in heat exchangers. The equations of 

motion independent on axial direction are written on the 

technical theory of cylindrical shells. The fluids motion is 

potential and is written by a wave equation. The fluid moves 

not separated from the cylinder walls. The fluid pressure in 

taken into account in the equations of motion of shells, and 

velocities of the fluid and the shell are equated on the 

boundaries. Representing the solution in the harmonic form, it 

is reduced to the system of transcendental equations. By 

comparing the solution of the problem without  liquid  and the 

solution in availability of liquid, the  dependence of the  

frequency of the liquid less system with the  frequency of the 

system with liquid is found. Eigen frequencies of vibrations 

are determined at some values of the system parameters, 

influence of the cylinders size on free vibrations of the 

cylinder is also studied. 

 

Index Terms: density, frequency, pressure, shell, 

vibrations, and wave. 

 

I. INTRODUCTION 

For the calculation of Eigen frequencies and 

amplitudes of the oscillations of the elastic element in the 

liquid, for instance, of the cylindrical heat generating 

element in the atomic reactor or of the tube in the heat 

exchange device, it is necessary to know the measure of 

the mass connected to it and to the damping force.  As it 

is demonstrated in the experiments [1]-[6] the viscosity of 

the liquid has a great effect to the value of the connected 

mass and to the damping of vibration. More over, these 

properties depend on the location of the non-moveable 

borders surrounding the cylinder. In [7] the cross- section 

vibrations of the infinite cylinder in the liquid 

surrounding by the non-moving concentric shell are 

investigated. At this case the velocity of the cylinder is 

changed by the harmonic law and the small displacements 

are investigated when the amplitude of vibrations is 

significantly less than the dimension of the gap between 

the cylinders and the liquid flow originated by this effect 

is a durable one. It is shown that there is a big 

dependence between the hydro-dynamical damping of 

vibrations and the liquid viscosity and the frequencies of 

vibrations. In [8] iinvestigation of free vibrations of 

spherical inclusion containing elastically suspended mass 

situated in acoustic medium, by the inverse method. 

 

 

II. THE PROBLEM FORMULATION. 

In this work the free oscillations of two concentrically 

located shells are examined for the case when there is a 

fluid between the shells.  The considered shell system is 

in great interest area of heat exchange researchers. On the 

base of the technical theory the equation of the movement 

of shells for the case when no displacement occurs in the 

axially direction can be presented in the form [9]: 
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where   is displacement potential,  - the coordinate in 

the circumferential direction, R -radius of the shell, h - 

thickness, E - Young modulus, z fluid pressure, q - 

specific mass of the shell. In the case of the potential 

movement of the liquid for small displacements  
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 -fluid density and  - fluid potential. 

 

The potential of the fluid velocity satisfies the 

equation: 
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By connecting the potential of the liquid velocity with the 

velocity of the shell displacements on the borders we 

have: 
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For the purpose of investigation of free oscillations the 

particular solutions of the system (1), (4) are considered:  

 

  ne ti

ii sin0  и    ne ti

n sin0                                     

(5) 

By substituting (5) into (1) and (4) we get  
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By excluding 
0

1  and 
0

2  from (6) we get 
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                  (7) 

In the case when there is no liquid between the shells, i.e. 

when  0  the system (7) takes the form: 
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(8) 

where 1  and 2  are the frequencies of free oscillations 

of the cylinders without any surrounding medium. By 

combining the equations (7) and (8) we get  
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By substituting the solutions of the equation (3) 

in (10) nnn NBJB 21   (where nJ  and nN  are the 

Bessel’s and respectively Neumann’s functions) into (10) 

we have   
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Taking into account that 1B  and 2B  unknown in (11) we 

have    

0)()(

0)()(

2
22'22

221
22'22

22

2
11'22

111
11'22

11











































































































B
a

r
aN

a

r
NqB

a

r
aJ

a

r
Jq

B
a

r
aN

a

r
NqB

a

r
aJ

a

r
Jq

nnnn

nnnn

























  (12) 

For the case 021    (what we can obtain by 

taking up the parameters  qhR ,,  in (8) by the 

corresponding way) we have 
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By denoting 
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a
  and taking into account the 

condition of non-triviality of the solution of the system 

(13) we get: 
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By solving (14) in the relation to   we get 
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For some given values of the parameters of the problem 

the graphs    K  are constructed at the intervals 

61030   for  K  and 
4105,40   for   (fig 1 

 1,0,3,0,50 12  rrq ), the graphs    K  

are constructed at the interval 
6105,20   for  K  

and 
4105,40   for   (fig 2 

 1,0,3,0,30 12  rrq ), the graphs    K  

are constructed at the interval  
61050   for   K  

and 
41040   for   (fig 3 

 3,0,5,0,50 12  rrq ). 

III. CONCLUSIONS 

The value of the Eigen frequency of the system 

increases quickly by the increasing of the frequency of 

the free cylinders. Then the increasing of the frequency of 

the system goes much slower and approximates 

asymptotically to the certain value. The frequency of the 

second mode beginning increases from some value with 

the decreasing of the stiffness of the tubes up to the 

certain value. This can be explained by the movement of 

tube walls and fluid particles that occurs at the same. First 

found by analytical solution of the free vibrations of 

concentric tubes. Such a tube system can be used in heat 

exchangers, heating or cooling devices. Meaning Eigen 

frequencies tubes may be necessary to prevent the 

resonance phenomena in the vicinity of sources of 

vibration or, conversely, cause fluctuations in the system 

to enhance heat transfer. 
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Fig 1: The dependences of the frequencies of oscillations for different modes of the  system on the frequency of the empty shell 

 1,0,3,0,50 12  rrq  
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Fig 2: The dependences of the frequencies of oscillations for different modes of the  system on the frequency of the empty shell 

 1,0,3,0,50 12  rrq  
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Fig 3: The dependences of the frequencies of oscillations for different modes of the  system on the frequency of the empty shell 

 3,0,5,0,50 12  rrq  

 

 


